Applicability of object-based storage devices in parallel file systems

Pete Wyckoff
Ohio Supercomputer Center

pw@osc.edu

HECURA Showcase 7 aug 07

Vision

- Processors faster, disk densities up, but I/O rates comparatively flat
- Leverage intelligent peripherals to improve scalability, managability, performance

Serverless parallel distributed file systems

Motivation

- OSDs offer higher-level semantic interface
- Secure, direct access of storage by clients
- Our work
 - Examine role of OSDs in parallel file systems
 - Analyze trade-offs of using OSDs for various aspects of parallel FSes
 - Develop extensions required for efficient use of OSDs in HPC parallel environments

OSD Background

- T10 specification
- Prototypes
- Emulators
- Pure target
- Security model

Mapping Data to Objects

- Block-based "objects" are 512 bytes
- OSD objects could be files
- For striped files, object is stripe, or stripe set?
- Collection feature allows grouping objects
 - fast searching
 - choose object boundaries to coincide with search
- Delegating object creation to clients
- When to create objects on create?
 - lazy, preallocate

Metadata

- OSDs store attributes with objects
- How do parallel FS attributes map to these?
 - uid, gid, perm, [acm]time, type
 - mtime of object vs mtime of file
 - data distribution: mapping of bytes to objects
 - POSIX extended attributes
- Managing collective behavior
 - object allocation, fsck, rebalancing
- Select objects by attribute
 - collections for indexing applied to metadata

Directories

- Familiar form of data organization
- No consistency to relax for directories
- Need overall sequential behavior for any single directory
- For passive targets, this may be impossible

Progress

- Full stack for OSD work
 - initiator library
 - iSCSI target
 - OSD emulator
- Parallel file system using OSDs
 - Phase 1: datafile
 - striping, handle mapping, object management
 - Phase 2: metafile
 - handle mapping, metadata storage, distributions
 - Phase 3: directory
 - atomicity, tree layout, POSIX corner cases

Stack

Initiator

- Create CDBs
- Submit commands
- Retrieve results
- Generate and parse get/set attributes
- Device enumeration and mapping
- Python interface and basic unit tests
- Use "bsg" interface to SCSI midlayer (+ fixes)
 - extended CDBs
 - bidirectional
 - iovec
- Use "bidi" patches from Panasas (+ fixes)
- Why not Intel or IBM initiators?
 - reliance on old kernel APIs
 - non-bidirectional

Target

- Use "stgt" for SCSI and iSCSI
 - all userspace
 - leading approach for linux adoption
 - active development
- Many changes to stgt, most merged
 - OSD target command processing
 - iSCSI bidirectional implementation
 - iSER (iSCSI/RDMA) implementation
 - bug fixes
- Why not kernel-based iSCSI target?
 - not the linux way
 - living in out-of-tree modules is difficult

OSD Target Emulator

- Processes the commands delivered by stgt
- Command categories
 - object manipulation (done)
 - attribute manipulation (done)
 - I/O (done)
 - security (not done)
 - device management (partial)
 - collections (soon)
- Object storage
 - via POSIX and ext3: pread, pwrite
- Attributes
 - via SQLite, full SQL implementation
 - complex operations very succinct and fast

Other OSD Target Emulators

- IBM ObjectStone
 - binary-only x86-32 blob
 - cannot modify or evaluate
- Intel uosd
 - very simple, single-file implementation
 - only 8 basic commands
 - each attribute stored in a separate file
- Du, UMN
 - extensions to Intel
 - added extensive security infrastructure
 - same attribute implementation

PVFS Modifications

Overheads

Processing phase	Overhead
SQLite	$81.3 \pm 0.3 \mu s$
CDB	$2.2\pm0.5~\mu\mathrm{s}$
iSCSI	$29.9 \pm 1.7 \mu s$
Initiator	$125.6 \pm 2.9 \mu s$
Total	$239.0 \pm 1.1 \mu \text{s}$

- SQLite is handy, but slow
- iSCSI processing can be overlapped with threading

PVFS Latency

- OSD slower than PVFS, mostly due to 83µs SQLite
- Create slower but scales identically
- "Ping" operation slightly faster on OSD (not shown): avoids SQLite processing

Create scaling with #clients

- Object database on disk: identical performance
- On RAM, OSD only 80% rate of PVFS I/O server
- Recent threading addition reduces this gap

I/O Throughput

- · One client writing or reading to one disk, using perf
- PVFS achieves higher throughput at large messages
- OSD ramps up better at small messages (PVFS flow tuning issue)

I/O Server Scaling

- One client, many I/O servers (or OSDs), perf at 64 kB
- Both ramp up okay
- PVFS penalized by default flow tunings and small size
- Terrible read behavior from TCP congestion control
- (iSER work removes this bottleneck.)

Application (BTIO) Performance

- Near identical performance
- Goal is to achieve similar performance, not improvement

Application (Flash) Performance

- Goal is to achieve similar performance, not improvement
- Stock PVFS performs poorly due to small message sizes

Major Accomplishments

- Use OSDs natively in a real parallel file system
- Infrastructure for OSDs
 - Library for OSD commands at initiator
 - Emulator for OSD target
 - iSCSI over RDMA for performance
- Revisit assumptions in PFS architecture
 - separate data and metadata
 - servers in the data path
 - servers at all

Barriers

- PVFS server functionality assumptions
 - handle mapping
 - server-initiated operations (soon)
- Other parallel FS assumptions
 - Ceph: servers forward write data to other servers
 - Lustre: byte-range locking, callbacks
 - Panasas: closer fit
 - NFSv4: OSD mapping exists (datafile only)
- lack of OSD hardware
- need for OSD extensions
 - atomic operations
 - scatter/gather on server
 - server-chosen retrieved attributes offset

Publications

- Integrating parallel file systems with objectbased storage devices
 - SC07, Reno, NV, November 2007
 - system design, PFS mapping, PVFS impl.
 - overheads, metadata scaling, IO throughput, apps
- Attribute storage design for object-based storage devices
 - MSST07, San Diego, CA, September 2007
 - details on SQL use in metadata storage
- iSER storage target for object-based storage devices
 - MSST07 SNAPI Workshop, San Diego, Sept 07
 - iSCSI over RDMA
- Metadata design paper
 - to FAST08, due Sep 07

Staff

- Pete Wyckoff
 - PI, 25+% time
 - initiator and PVFS lead
- Ananth Devulapalli
 - OSC staff, 25+% time
 - target lead
- Dennis Dalessandro
 - OSC staff, 25% time
 - network lead

Students

- Nawab Ali
 - OSU graduate student, CS, 2nd year, half time
 - advisor: P. Sadayappan
 - parallel FS metadata design
- Paul Betts
 - OSU undergraduate, senior CS, 15 hr/wk
 - initiator kernel module, python interface
- Alex Moore
 - OSU undergraduate, senior CS, 15 hr/wk
 - target attribute handling
- Tim Arnold
 - OSU undergraduate, sophomore physics, 15 hr/wk
 - LIST, collection functions

Conclusion

- Enable higher semantic interface to storage
- Avoid middle-box interference on data path
- Understand roles of clients, metadata servers,
 IO servers, lock servers, etc in parallel FSes
- Actively sharing code with
 - Panasas
 - Seagate
 - Fujitsu
- Goal: build a single shared OSD environment to encourage research by ourselves and others